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To Simulate or NOMINATE? 

Carroll et al. (2009) summarize the similarities and differences between the 
NOMINATE and ideal methods of fitting spatial voting models to binary roll-call 
data. As those authors note, for the class of problems with which either NOMINATE 
and the Bayesian quadratic-normal model can be used, the ideal point estimates 
almost always coincide, and when they do not, the discrepancy is due to the somewhat 
arbitrary identification and computational constraints imposed by each method. There 
are, however, many problems for which the Bayesian quadratic-normal model can be 
easily generalized, so as to address a broad array of questions and take advantage of 
additional data. Given the nature and source of the differences between NOMINATE 
and the Bayesian approach—as well as the fact that both approaches are approximations 
of the decision-making processes being modeled—we believe that it is preferable to 
choose the more flexible Bayesian approach. 

We completely agree with Carroll, Lewis, Lo, Poole, and 
Rosenthal’s (2009, 555) conclusion in their contribution to this issue 
of Legislative Studies Quarterly that “neither model [NOMINATE nor 
ideal] has a clear advantage over the other in the recovery of legislator 
locations or roll-call midpoints in either larger or small legislatures.” 
We would suggest, however, that there are other important differences 
between the two methods of analyzing roll-call data. The Bayesian 
approach is more flexible than the family of NOMINATE estimators, 
as it is more easily adapted to account for additional data structures and 
alternative modeling assumptions. To answer the question that Carroll 
et al. pose—“Which (if any) approach is most appropriate in any given 
research situation?”—we believe that the Bayesian approach underlying 
ideal is more readily applicable to many research situations. 

Before getting into details, we stress that this exchange is friendly. 
We regularly correspond with the other authors on matters regarding 
the analysis of roll calls: for example, the subtleties of identification, 
how to speed up computing for the roll-call problem, and using (and 
breaking) our respective computer programs.1
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In the article that follows, we review the Bayesian underpinnings 
of our approach in Section 2. In Sections 3 and 5, we contrast the 
assumptions underlying both NOMINATE and our Bayesian approach, 
and in Section 4 we draw attention to some interesting features of 
NOMINATE. To introduce some notation and key concepts, we begin 
by briefly restating the operationalization of the Euclidean spatial 
voting model (Enelow and Hinich 1984) that we developed with Rivers 
(Clinton, Jackman, and Rivers 2004b) and which underlies ideal.

1. The Quadratic-Normal Voting Model

Roll call j ∈ {1, …, m} presents legislator i ∈ {1, …, n} with 
a choice between a “yea” position (ζj) and a “nay” position (ψj) with 
locations in d ,  where d denotes the dimension of the policy space. 
Let yij = 1 if legislator i votes “yea” on the j-th roll call and yij = 0
if the legislator votes “nay.” Abstentions generate missing data, which 
we consider to be missing at random in our analysis.2 We assume 
legislators have quadratic utility functions, Ui j j i ij( )ζ ζ ξ η=- - +

2
  and 

U vi j j i ij( ) ,ψ ψ ξ=- - +
2

  where ξi  ∈ 


d   is the ideal point of legislator 
i, and ηij and vij  are stochastic elements of utility (errors), and   is
the Euclidean norm. Utility maximization implies yij = 1 if Ui(ζj) > Ui(ψj) 
and yij = 0 otherwise. We complete the voting model by assuming 
that the errors ηij  and vij  have a joint normal distribution with 
E(ηij) = E(vij), var(ηij – vij) = σ j

2 ,  and the errors are independent 
across both legislators and roll calls. Straightforward algebra 
yields πij ≡ Pr(yij = 1) = Φ(βj´ξi – αj), where βj = 2(ζj – ψj)/σj, 
αj = (ζj´ζj – ψj´ψj)/σj, and Φ(•) denotes the normal distribution function. 
With these assumptions we have a probit model with an unobserved 
regressor, ξi , corresponding to the legislator’s ideal point (a logit model 
results if the errors have extreme value distributions). In one dimension, 
the ratio τj = αj/βj = (ζ ψj j

2 2- )/2(ζj – ψj) = (ζj + ψj)/2  is the cut-point, the 
point at which a legislator is indifferent between the proposals (absent 
stochastic sources of utility).

Assuming conditional independence of the votes across legislators 
and votes, given ideal points and vote-specific parameters, the likelihood 
is 

� 

p(Y | Β,α ,Ξ) = π ij
yij

j=1

m

∏ (1− π ij )
1−yij

i=1

n

∏  , where B is an m-by-d matrix of 
bill parameters (formed by stacking the βj), α = (α1, . . .,αm)′ is a vector 
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of unknown intercept parameters, Ξ is an n-by-d matrix of ideal points 
(formed by stacking the ξi), and Y is the n × m matrix of observed votes 
with (i, j)th element yij.

Identification. When fitting a unidimensional model, we typically 
constrain the ideal points, ξi, to have mean 0 and standard deviation 
1 across legislators (the “normalize” option in the implementation of 
ideal in R). This technique is sufficient for local identification in the 
sense that Rothenberg (1971) uses the term, ruling out observationally 
equivalent translations and rescalings of the parameters, save for a 
reflection of the parameters about the origin. We typically find that 
the lack of global identification is not a practical concern when we 
fit unidimensional models to datasets from recent U.S. Congresses. 
Because the posterior densities are usually estimated with reasonable 
levels of precision (the roll-call matrices are quite large, and the uni-
dimensional model provides an excellent fit to data from recent U.S. 
Congresses), the Gibbs sampler never visits the “mirror image” mode 
of the posterior density. Identification is  more delicate when we seek 
to fit higher-dimensional models (Rivers 2003).

Bayesian Inference. We adopt a Bayesian approach to inference 
for the unknown model parameters. That is, we seek to characterize the 
posterior density of the unknown parameters, which, via Bayes’ Rule, 
is p(B, α, Ξ | Y)     p(Y | B, α, Ξ) p(B, α, Ξ), where the first density on 
the right-hand side is the likelihood and the second is the prior density. 
Absent information to the contrary, we generally assume complete a 
priori independence among the model parameters. For convenience, we 
usually specify a mean of 0 and normal densities for these priors. With 
the probit form of the voting model, we can use an easily implemented, 
although computationally intensive, data-augmented Gibbs sampling 
algorithm to sample from the posterior density (see Clinton, Jackman, 
and Rivers 2004b for details). Carroll et al. (2009, Section 3.1) have 
highlighted the importance of the choice of variances for these prior 
densities, a matter we explore in Section 5. 

2. Bayesian Inference, or Something Else?

An important difference between NOMINATE and ideal is 
that the latter is Bayesian and the former is not. This difference is 
consequential because non-Bayesian, classical statistical inference is 
problematic in the roll-call setting. Jackman (2009) has made the case 
for Bayesian inference in the social sciences elsewhere, but we will 
provide a capsule of the argument here.

� 

p(Β,α ,Ξ) ∝ p(Y | Β,α ,Ξ)p(Β,α ,Ξ)
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Classical statistical inference does not make sense in many social 
science applications, because the underlying idea of repeated random 
sampling from a population is untenable. Roll-call data provide a case 
in point. A typical roll-call analysis consists of gathering some or all 
recorded votes in a given legislature in a given time period. In what 
sense do these data constitute a random sample? What is the population 
from which this dataset can be considered one of many possible random 
samples? We think that the answers to these questions are not readily 
apparent. 

In this way, roll-call analysis is vastly different from, say, the 
analysis of survey data, with which we can entertain the thought 
experiment of repeatedly sampling respondents from a well-defined 
population, administering the survey to them, and getting a different set 
of data and statistics each time. The possibility of sampling variability—
the cornerstone of classical statistical inference—is reasonable in this 
survey setting, but it is more dubious in the roll-call setting.

Bayesian procedures ask, “Given these data, y, what should I 
now believe about an unknown quantity, θ?” Bayes’ Rule tells us how 
to update prior beliefs regarding q in light of y to yield a posterior 
probability density of p(θ  y). Bayesian inference does not rest on the 
notion of repeated sampling, an idea that is, at best, sketchy in the 
roll-call setting. We prefer a Bayesian approach to analyzing roll calls 
because the underlying statistical foundations make sense.

We believe one ought to use a Bayesian approach, but we have 
yet to make the case for the specific Bayesian approach implemented in 
ideal. The probit, two-parameter item-response-theory (IRT) model in 
ideal follows from a set of assumptions about the form of legislators’ 
utility functions. The specific choices we made were driven by our 
desire to generate an easily implemented estimator (for instance, the 
data-augmented Gibbs sampler) while staying close to the presentation 
of spatial voting models in the literature (for example, quadratic-loss 
utilities). Other assumptions are certainly possible, and, in fact, we 
provide a Bayesian version of NOMINATE in Section 6. 

The other feature to recommend a Bayesian approach is its relative 
simplicity. Bayes’ Rule states that this posterior density is proportional 
to the likelihood for the data, y, multiplied by the prior density for θ, 
p(θ). There is no more to Bayesian inference, and no less. There is no 
place for ex post or ad hoc “fixes” in a Bayesian analysis.

Of course, the devil is in the details. What likelihood and priors 
will we assume? How will we carry out the computation? How will we 
summarize the posterior? The choice of which likelihood to fit to the data 
is one faced by all analysts, not only Bayesians, and the motivation for 
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our conventional choices appears in Section 1. The details of Bayesian 
computation for the roll-call problem are now relatively settled and 
uncontroversial (in contrast, we will raise some quibbles with the 
estimation and inference procedures in NOMINATE).

3. Differences in Functional Form

The analysis of roll-call data seeks to characterize revealed 
preferences. Researchers assume a model of voting in which preferences 
are embedded as parameters to be estimated from observed votes. 
Different assumptions about the underlying voting model and different 
estimation methods will lead investigators to different estimates of 
preferences. Even so, the excellent exposition of Carroll et al. demon-
strates that similarities in the assumptions of the statistical models of 
NOMINATE and ideal tend to yield similar answers, particularly for 
large datasets that the models fit very well (as low-dimensional spatial 
voting models fit the data from recent U.S. Congresses).

The Bayesian/non-Bayesian distinction aside, the most 
fundamental difference between NOMINATE and ideal is that 
NOMINATE assumes that legislators’ utility functions are scaled 
Gaussian functions, whereas ideal assumes that legislators’ utilities 
are quadratic in Euclidean distance. As Carroll et al. point out (see their 
Figure 1), in a neighborhood of the legislator’s ideal point, the Gaussian 
is quadratic, and so, in this local sense, NOMINATE and ideal share 
the same deterministic component of the utility function. This similarity 
explains why the estimates of ideal points are frequently near-identical 
but also why, when they differ, they typically differ at the extremes.

It is reasonable to ask if one utility function—or measurement 
model, per se—fits the data better than another. But this question is hard 
to answer because the Gaussian/logistic model used in NOMINATE and 
the quadratic-probit model in ideal do not nest via a set of parameter 
restrictions. Neither model is capable of out-of-sample predictions,3 so 
comparing the in-sample performance of both models (see, for example, 
Carroll et al. 2009) is about as well as we can do. Yet any comparison 
of in-sample performance is muddied by the different identification 
strategies used by the two models.

Thus it is difficult to determine which set of functional form 
assumptions best fit observed roll calls. We doubt that solving this 
issue with roll-call data alone is feasible. Making fine distinctions about 
functional form with respect to unobservables is always difficult with 
observational data.4 Determining the functional form of legislators’ 
utility functions is a question of considerable interest, but we suspect 
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a quest for the “true” utility function would be costly, time consuming, 
and unable to yield the desired holy grail.

Even so, Carroll et al. suggest that NOMINATE has some 
resistance to outliers. To this end, they examined differences in the 
NOMINATE and ideal estimates of the ideal point of Senator Russ 
Feingold in the 109th Senate. To better understand this feature of 
NOMINATE, recall that the NOMINATE voting model is: 

 	     
where Λ(⋅) = exp(⋅)/(1 + exp(⋅)) is the logistic distribution function, Yj 
and Nj are the locations of the yea and nay positions for roll call j, and 
w and β are scaling parameters (Carroll et al. 2009, equation 2). These 
scaling parameters are estimated from the data by the NOMINATE 
algorithms, and, in this sense, NOMINATE fits a richer model to the data 
than the IRT model. In conjunction with the nonlinearity inherent in the 
Gaussian utility functions, these scaling parameters help NOMINATE 
dampen the influence of seemingly aberrant votes—although we are 
not confident that even a large dataset would yield much information 
about both w and β; we return to this question in Section 6.5 

4. Additional Contrasts with NOMINATE

There are some additional differences between our Bayesian 
approach and NOMINATE that are not widely understood. Although 
none of these issues seem particularly consequential in the “easy” 
case of a large roll-call matrix well fit by a low-dimensional spatial 
voting model (such as provided by recent U.S. Congresses), we stress 
that: (a) the analysis of roll-call data involves numerous assumptions, 
regardless of the model used; (b) some peculiar assumptions underlie 
NOMINATE, shaping its output in ad hoc, informal ways; and 
(c) the incorporation of assumptions into our Bayesian approach is 
relatively transparent, parsimonious, and even spartan in comparison 
to the process  in NOMINATE. 

NOMINATE’s point estimates are only approximately maximum-
likelihood estimators, because NOMINATE obtains its estimates 
through a series of alternating, conditional maximum-likelihood steps.6 
In fact, it is possible that NOMINATE’s point estimates correspond 
to saddlepoint solutions of its objective function. We lack good 
intuition regarding the practical consequences of NOMINATE being 
an approximate maximum-likelihood estimator.

,   (1)

� 

π ij ≡ Pr( yij ="Yea") = Λ β exp  
−w

2
ξi − Yj( )2 

  
 
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− β exp  
−w

2
ξi − N j( )2 
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In fairness, the point estimates produced by our Bayesian 
approach—the means of the respective marginal posterior densities—are 
only approximately Bayes estimates, because they are accompanied by 
Monte Carlo error (which modern computing power can make arbitrarily 
small). Nonetheless, we are more confident about the statistical basis 
of the output of ideal (Bayes estimates, point summaries of posterior 
densities) than we think we can be about the output of NOMINATE, 
particularly in light of the discussion to follow.

NOMINATE uses a correlation-based convergence criterion 
for determining when to cease iterations (Poole and Rosenthal 1997, 
237). Between this feature and NOMINATE’s alternating, conditional 
maximum-likelihood algorithm, NOMINATE may not find its way to 
the global maximum of its objective function, and difficulties in the 
optimization of that objective function—or even the nonuniqueness of 
a global maximum—can go undetected.

To be fair, our Bayesian approach explores the posterior density 
using Markov chain Monte Carlo (MCMC) methods, and there is always 
a risk that the analyst might stop a MCMC algorithm too soon. The 
determination of lower bounds on running times for MCMC algorithms 
is problem specific, and we can only suggest that users carefully check 
that any MCMC algorithm is generating a satisfactory exploration of the 
posterior density—for example, visiting the tails of the posterior density 
sufficiently often so as to generate good estimates of credible intervals.

NOMINATE makes ad hoc corrections to the distribution of 
estimated ideal points. According to Carroll et al., “. . . NOMINATE 
constrains the distance between those legislators located at –1 and 1 
(the leftmost and rightmost positions) and their nearest neighbors not 
located at –1 and 1 to be no more than 0.1 unit (or 5% of the –1 to 
1 scale). . . . In very small legislatures (fewer than 20 members), the 
constraint is not applied at all” (2009).

As far as we can tell, this constraint exists to make the resulting 
distributions of estimated ideal points look more plausible than they 
would otherwise; see Poole’s discussion (2005, 155–57). This seemingly 
ad hoc constraint contrasts with the stark simplicity of Bayesian 
inference, in which “the posterior is proportional to the prior times the 
likelihood.” Priors over ideal points or bill parameters may operate so as 
to constrain some ideal points to be closer or farther away from others, 
but priors are usually formulated to bring additional legislator-specific7 
or vote-specific8 information to bear on the analysis, not to adjust the 
appearance of the a posteriori distribution of recovered ideal points.

NOMINATE uses a number of mechanisms to try to prevent the 
calculations from wandering into numerically unstable regions of the 
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parameter space. These measures include the defaults that any roll call 
retained for analysis have no fewer than 2.5% of the recorded votes 
on the losing side and that any legislator retained for analysis vote at 
least 20 times. Also, NOMINATE effectively constrains proposal and 
status-quo points and ideal points to lie in the [–1,1] interval when it fits 
a unidimensional model. These defaults—present as computational safe-
guards, more than anything—generate some of the same functionality 
provided by priors in our Bayesian analysis.

Even if NOMINATE were a maximum-likelihood estimator, the 
information matrix of all the parameters would be extremely large 
and difficult to compute and invert (Poole and Rosenthal 1997, 246). 
For many years, NOMINATE reported approximate standard errors, 
which were probably too small, but by a factor that was not particularly 
consequential in most large datasets. With the advent of faster computers, 
NOMINATE’s standard errors are now generated by a simulation-based, 
parametric bootstrap procedure (Lewis and Poole 2004). Nonetheless, 
these standard errors have unusual properties in some cases we have 
examined, which we detail in Section 6. These issues arise even if we 
take the standard errors on their own terms, as estimates of variability 
in the estimates due to random sampling, our earlier critique of classical 
inference in the roll-call setting notwithstanding. 

Some of these points are “legacy” issues, holdovers from the days 
when NOMINATE was developed for the analysis of large roll-call 
matrices on much slower computing hardware than we have at our 
disposal today.9 Even so, they are differences worth considering when 
we evaluate the output of the two models. We are heartened by the 
Carroll et al. implementation of a MCMC version of NOMINATE, and 
we present a Bayesian version of NOMINATE that overcomes some 
of these issues in Section 6.

5. Priors in the Bayesian Analysis of Roll-Call Data

Carroll et al. draw particular attention to the sensitivity of the out-
put of the Bayesian approach to the priors. We concede that the choice 
of the prior can be consequential. Our colleagues ably demonstrate 
circumstances in which posterior densities are sensitive to priors in 
roll-call-data analysis. Nonetheless, we would emphasize several points 
with respect to the choice of priors. First, the choice of prior is but one 
of several “subjective” decisions that must be made when analyzing 
roll-call data. Second, sensitivity to prior assumptions is inescapable, 
particularly if the roll-call data is “short” on one or both dimensions (the 
number of legislators and/or the number of votes), if some legislators 
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have extreme voting histories, if some votes are extremely lopsided, or 
if some combination of these scenarios exists. Third, when the roll-call 
matrix contains only a small amount of information about a legislator’s 
ideal point or a particular roll call, prior densities can bring additional 
information to bear in a transparent, yet formal way.

That said, the analysis of roll-call data poses challenges for both 
classical and Bayesian analysis: the “bare bones” version of the model 
is not identified, and for extremely lopsided roll calls and legislators 
with extreme voting histories, the maximum-likelihood estimators of 
the corresponding parameters are not finite. Given these conditions, we 
should not be surprised that the results may be sensitive to the priors. 
Moreover, priors that seem “uninformative” might not be after we 
impose identifying restrictions. When conducting any Bayesian data 
analysis—but perhaps especially the analysis of roll-call data—we must 
think carefully about the implication of the priors being used.

Recall that in our Bayesian approach we typically obtain local 
identification for the unidimensional version of the model via a 
“mean = 0, variance = 1” restriction on cross-legislator distribution 
of the ideal points. That is, we begin with the unidentified model

We then impose the normalization  ξĩ = (ξi – c)/m, where c = ξ and m = sd(ξ). 
Further, we seek β̃j and αj̃ such that ξi βj – αj = ξ̃i β̃j  – αj̃ , from which we 
deduce that βj̃ = βj m and αj̃ = αj – βj̃c/m = αj – βjc. A priori, we have c = 0 and 
(at least for a reasonably large n) m = sd(ξ) ≈ σξ , and so for the identified
parameters we have ξĩ ~ N(0,1), βj̃ ~ N(0,σ σξ β

2 2 ),  and α ̃~ N(0,σβ
2 ). Note

that the prior variance for β ̃ is the product σ σξ β
2 2 . If both σξ

2  and σβ
2  are

set to large quantities, then the resulting prior variance for β̃ can be 
potentially massive, or at least much larger than what the user may have 
intended when specifying the variance of the prior of the unidentified 
parameter, βj. An interesting case is one in which the user specifies σξ

2  = 1,
so V(βj̃) = V(βj). The normalization from ξi to ξĩ  means that σξ

2  is largely 
a redundant parameter: in the absence of any prior information over the 
ξi, we may as well set σξ

2  = 1, such that V(βj̃) = σβ
2 . The user-supplied 

value for this quantity corresponds to the variance over the identified 
parameter β̃j. 

Midpoint Parameters. Carroll et al. compared the performance of 
the two procedures in terms of recovery of roll-call midpoints. In the 
parameterization we employ in ideal, the midpoint between ζj and ψj 
is recovered as τj = αj̃/βj̃. This is a ratio of two random variables, each 
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of which are given normal priors centered on 0, which means that the 
implied prior on the bill midpoint, τj, has a heavy-tailed Cauchy form. 
Indeed, if α̃j and βj̃ have the same prior variance, then the prior 50% 
credible interval for τj is [–1, 1], but the prior 95% credible interval is 
[–12.7, 12.7] (recall that ideal points are normalized to have a mean 
of 0 and a standard deviation of 1). Thus, reasonable priors for the bill 
parameters generate ridiculously vague priors for the midpoints,10 and 
if we really wish to perform inference with respect to the midpoints—
and these are interesting parameters—then perhaps we need a different 
approach.11

Re-parameterize the Model in Terms of a Midpoint Parameter. 
The quadratic-normal model can be rewritten so that the midpoints 
appear as parameters in their own right: we rewrite the model as 
Ф–1 (πij) = β̃j(ξ̃i – τj ), where τj = αj̃ /βj̃. We can then specify a prior 
for the midpoints directly: τj ~ N(0, 1.52) would be quite permissive 
relative to the a priori distribution of the ideal points, or we might 
use a prior that simply stipulates that the cut-points lie to the interior 
of the distribution of ideal points, τj ~ Unif (min(ξ), max(ξ)). This 
alternative parameterization is trivial to deploy, especially when one 
uses a general-purpose program for Bayesian statistical modeling, such 
as BUGS (Spiegelhalter et al. 2003) or JAGS (Plummer 2009), for roll-
call matrices of small to moderate size.

Not Bayesian Enough? Another possibility is a hierarchical model 
for τj or for the other model parameters. At various points, Carroll et al. 
have compared NOMINATE and ideal using the mean squared error 
(MSE) of estimates of parameters such as bill midpoints. If our goal 
is to reduce the MSE, then we know that the “shrinkage” induced by 
fitting a hierarchical model produces Bayesian posterior densities that 
have frequentist properties superior to classical estimators. The principal 
result, due to Stein (1956), is that a set of hierarchical Bayes estimates 
of normal means—each given by the mean of the respective marginal 
posterior density (with variance equal to the variance of the marginal 
posterior density)—has less total MSE than the classical estimators 
of the means. Accordingly, if instead of treating the bill midpoints 
as a series of fixed effects (to use some non-Bayesian terminology), 
we specified a hierarchical model for them,12 then we should not be 
surprised to find superior performance in a total MSE sense. A similar 
argument holds for other parameters in the roll-call model. In short, 
we think it is quite possible that there exists a version of our Bayesian 
approach, one with hierarchical structure over midpoints and ideal 
points, that outperforms rival models on a total MSE criterion.



603To Simulate or NOMINATE

In fact, one might well argue that hierarchical modeling is (or 
ought to be) the default in Bayesian modeling13 and that the “vanilla” 
analysis of roll-call data—in which the analyst typically possesses no 
prior knowledge to distinguish bill j from bill k—is a prime candidate for 
hierarchical modeling.14 That is, perhaps ideal is not Bayesian enough! 
We present a hierarchical model for roll-call analysis in Section 5.2.

5.1. Example: Obama as “the Most Liberal Senator” in 2007

We explore the question of prior sensitivity by examining an 
interesting selection of roll calls from the U.S. Senate. In the midst 
of the 2008 presidential campaign, National Journal announced that 
Senator Barack Obama (D-IL) was the most liberal senator in 2007. 
National Journal had also pronounced Senator John Kerry (D-MA) 
the most liberal senator in 2004, a claim we examined in considerable 
detail at that time (Clinton, Jackman, and Rivers 2004a).

In both cases, a potentially serious threat to these conclusions 
is that the National Journal ratings ignore the fact that candidates for 
president miss a substantial fraction of votes. The votes analyzed by 
the National Journal in 2005, 2006, and 2007 are a small subset of 
the total number of recorded votes that year: 19%, 29%, and 22%, 
respectively. And the pattern of missingness in the votes selected 
by the National Journal is highly correlated with the presence of a 
presidential election. Senator John McCain (R-AZ) missed 4.2% and 
4.9% of the votes scored by the National Journal in 2005 and 2006, 
respectively, but McCain missed 55.6% in 2007. Likewise, Senator 
Obama missed only 1.4% of all roll calls and none of the National 
Journal key votes in 2005 and 2006, respectively, but he missed 33.3% 
while campaigning during 2007. For Obama in 2007, we only have 
66 recorded key votes; for McCain, we have only 44 key votes. The 
relatively high degree of missingness and the substantive importance 
of the analysis make it an excellent opportunity to look for the effect 
of priors on our Bayesian analysis. We also use these data to assess 
the plausibility of extending the basic model to incorporate additional 
information in Section 5.2. (An additional complication that we ignore 
at this point is that the bills scheduled for a vote when the presidential 
candidates were present may differ from those scheduled for when the 
candidates were absent, because the scheduling of issues in the Senate 
is endogenously determined—abstentions are not missing at random, 
as both NOMINATE and IDEAL assume.)

To demonstrate the consequences of adjusting the weight given to 
the prior relative to the likelihood function, we analyze the 99 National 
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Journal key roll calls in 2007 using a one-dimensional model under 
four different priors: σβ

2  ∈ {1, 52, 102, 252}. For each case, we employ 
the “mean = 0, variance = 1” normalization for the ideal points, ξt, 
discussed in Section 1. We set σξ

2  = 1 such that the prior variance of 
the identified parameters α̃ and β̃ is σ σ σ σβ β ξ β

2 2 2 2= = .   The prior is thus 
only a function of the σβ

2  hyperparameter.
Figure 1 displays trace plots and autocorrelation functions for the 

output of the MCMC algorithm sampling from the marginal posterior density 
of Obama’s ideal point, under the four different priors.15 As the prior infor-
mation about β̃ and α̃ becomes vaguer (σβ

2  gets larger), the performance 
of the MCMC algorithm degrades, with larger and more slowly decaying 
autocorrelations. This degradation occurs because as the precision of the 
prior information about the bill parameters eases, the posterior densities for 
these parameters become more diffuse; in turn, since the β̃ and α̃ parameters 
contribute information about the ideal points, the posterior density for 
Obama’s ideal point skews to the left, even with the identifying restriction 
that the ideal points have a mean of 0 and a variance of 1. 

Figure 2 summarizes the marginal posterior density for Obama’s 
ideal point in the panels on the left. The histograms summarize the 
10,000 draws from the posterior density of Obama’s ideal point retained 
from a 1.1 million-iteration run of ideal. The phenomenon we 
described earlier is clearly apparent. Over the four prior specifications 
for the bill parameters, the mean of the posterior density for Obama’s 
ideal point moves about one-half of a standard deviation of the ideal-
point distribution to the left, from –1.37 to –1.84. The increase in the 
left skew of the posterior density is also apparent, and the standard 
deviation of the posterior density almost doubles as we increase the 
standard deviation of the prior density by a factor of 25. 

The impact of the change in the prior on the inferences we might 
draw about Obama’s rank can be assessed if we examine the right col-
umn of panels in Figure 2. As we assume less about the bill parameters 
(increasing their prior variance σβ

2 ), we become less certain about where 
to locate Obama’s ideal point (left panels of Figure 2), but we become 
slightly more confident that Obama’s ideal point occupies rank 1. The 
posterior mass function over the order statistic of Obama’s ideal point 
is quite diffuse with the relatively informative prior given by setting 
σβ

2  = 1 (top row of Figure 2); we assign only a .11 probability to Obama 
being “the most liberal senator” with this prior. As we assume less about 
the bills, inducing the leftward drift and skew in the posterior density 
over Obama’s ideal point, we see the probability that Obama occupies 
rank 1 increasing to .19 (σβ

2  = 52), .22 (σβ
2  = 102), and .23 (σβ

2  = 252).  
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FIGURE 1
Trace Plots and Autocorrelation Functions

of Markov Chain Monte Carlo Output for Obama’s Ideal Point
under Different Prior Specifications

Note: Ideal points, ξi
, were constrained to have a mean of 0 and a variance of 1 across

senators, such that 2
βσ  is the only “free” hyperparameter in the specification of the

prior. For the trace plots, the gray line shows a moving average. “Effective sample size”
is a measure of the inefficiency of the MCMC algorithm; for instance, with 2

βσ  = 102, the
10,000 iterations (thinning one million iterations by a factor of 100) yield an estimate
of the mean of the posterior density that has as much Monte Carlo error as we would get
from approximately 851 independent draws from the posterior density.
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Obama never has the highest probability of being the most liberal 
senator; Bernie Sanders (I-VT) is always rated as being more liberal than 
any other senator. Moreover, even with the least amount of prior informa-
tion about the bills, no one senator is unambiguously “the most liberal.” For 
instance, Sanders’s posterior probability of being the most liberal senator 
never exceeds .30 in these specifications, and as many as seven senators 
can be assigned a non-negligible posterior probability of occupying rank 1. 

In sum, it is hardly the case that the results “fall apart” or are 
“totally driven by the prior,” but it is apparent that the less we are 
prepared to assume about the properties of the votes a priori, the less 
we wind up knowing, relatively, about Obama’s ideal point a posteriori. 
This limitation is a subtle feature of the Bayesian IRT model, and one 
that Carroll et al. rightfully bring to light. Nonetheless, for priors of 
the sort σβ

2  > 52,  the results are relatively robust. Moving from the 
relatively tight priors with σβ

2  = 1 to σβ
2  = 52 produces the biggest 

changes in the results, and even these changes are not massive in any 
absolute or substantive sense.

In addition, only the estimated rank order of extremists experiences 
any real sensitivity to changes in the prior variance. Recall that Obama 
not only missed a substantial number of votes, but also recorded a 
relatively extreme voting history. In contrast, McCain, despite missing 
nearly 20% more votes than Obama, is assigned nearly the same rank 
regardless of the prior variance assumed. 

To the extent that priors matter in the estimation of the basic 
ideal model, they matter most for the extreme legislators. For almost 
all of the others, however, the data dominate the prior. Because the 
estimates of interest are typically relatively centrally located—medians 
of the floor, committees, parties, and such—so long as the roll calls 
have a reasonable number of cut-points in this central region of the 
policy space, the choice of prior variance over the bill parameters will 
not be substantively consequential. Moreover, it is trivial to assess the 
sensitivity of the results to the priors.

5.2. An Informative Prior via Hierarchical Modeling

When constructing its rankings in 2007, the National Journal 
assumed that only votes cast in 2007 were relevant for estimations of 
senators’ ideology in 2007. These data are not particularly informative 
about the ideal points of some legislators, either, because presidential 
candidates missed a much larger percentage of votes than did other 
senators. An example shows how the Bayesian approach can use 
additional information to supplement the analysis of roll-call data.



608 Joshua D. Clinton and Simon Jackman

The simplest way to incorporate additional information is to pool 
roll calls across time (in this case, years). We can then make the strong 
assumption that all ideal points are constant across time, effectively 
increasing the amount of information from which we make inferences 
about the ideal points. This method is similar to the approach we 
adopted in our earlier work examining the 2003 National Journal ratings 
(Clinton, Jackman, and Rivers 2004a).

Here we use a different strategy, exploiting information about 
legislators via the following hierarchical model. Our model is very 
simple, exploiting two attributes of legislators: their party affiliations, 
and the political complexions of their respective states, as measured 
by the share of the vote won by John Kerry in the 2004 presidential 
election. We incorporate this information with the following hierarchical 
model for the ideal points: ξi ~ N(µξ,ω2), µξ = γ0 + Riγ1 + Ks(i) γ2,
γ ~ N(0, 102 • I3), ω ~ Unif(0,1), where γ = (γ0, γ1, γ2)´ and ω2 are 
hyperparameters,  Ri is a binary indicator (1 if senator i is Republican 
and 0 otherwise), and Ks(i) is Kerry’s share of the vote in state s. The 
last two stochastic components of the hierarchical model specify vague 
priors over the hyperparameters. This model allows the observed charac-
teristics Ri and Ks(i) to contribute information to the analysis, but it uses 
the vague priors on the hyperparameters to reflect a priori uncertainty 
on our part as to how the information in Ri and Ks(i) shapes inferences 
about ξi. This model is perhaps too simplistic to be substantively de-
monstrative, but it illustrates the larger point that our Bayesian model 
can be easily extended to incorporate additional information.

As usual, we imposed the identifying normalization that the 
ideal points have a mean of 0 and variance of 1 across legislators. This 
restriction sets an upper bound on ω and results in transformations of 
the γ and ω parameters.16 For the bill parameters, we used the prior
(βj, αj)´ ~ N(0, 52 • I2).  We implemented this model in JAGS, which can 
generate several thousand samples from the posterior density for this 
model and for this small dataset quite quickly. The sampled values of 
the identified parameters reveal that the sampler in JAGS generates an 
efficient exploration of the posterior density for this problem.

We compared the posterior densities over ideal points produced 
by this hierarchical model with the results of the nonhierarchical model 
fit with σβ

2  = 52. Figure 3 presents the two sets of estimates, with lines 
connecting them so as to highlight the shrinkage we usually see as a 
consequence of fitting a hierarchical model. The hierarchical model 
tends to pull together the estimated ideal points of senators with similar 
covariate values, especially when the information in the data about ideal 
points is not particularly rich (for example, for extremists, or senators 
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with relatively short voting histories, or some combination thereof). The 
identifying restriction that the ideal points have a mean of 0 and variance 
of 1 means that there cannot be big differences between the hierarchical 
and nonhierarchical models with respect to estimates of ideal points.

In the lower panel of Figure 3, we present the standard deviations 
of the two sets of marginal posterior densities for the ideal points: one 
obtained from the hierarchical model (vertical axis), the other from the 
nonhierarchical model (horizontal axis). The comparison highlights the 
gains of utilizing the information in the covariates. The hierarchical 
model generally produces more precise estimates of the ideal points, 
especially for ideal points estimated relatively imprecisely by the 
standard, nonhierarchical model. Note what we have accomplished here: 
politically relevant sources of information about the ideal points have 
entered the analysis but not in a particularly heavy-handed way (we 
deployed vague priors for the hyperparameters), considerably boosting 
the precision of the inferences drawn about ideal points and quantities 
that are functions of the ideal points, such as rank orderings.

Also of interest are the γ1̃ and γ2̃ parameters, the hyperparameters 
attaching to the Republican indicator variables (Ri) and the Kerry 
vote shares (Ks(i)). The posterior mean (and 95% highest probability 
density interval) for γ̃1 is 1.51 (1.35, 1.69) and –.032 (–.042, –.021) 
for γ̃2. Consistent with the strong separation of ideal points by party, 
these parameter estimates suggest that, on average, senators from the 
same state but different parties will have ideal points that differ by 1.5 
standard deviations of the ideal-point distribution. Moreover, these two 
variables account for a great deal of the variation across legislators in 
ideal points: the posterior density for the residual standard deviation, 
ω̃, has a mean of .35 (.30, .41).

6. Bayesian NOMINATE

We fit these same data—the 99 National Journal key Senate 
roll calls for 2007—using NOMINATE as implemented in the 
R package w-nominate (Poole et al. 2007). The default data-
retention options in w-nominate use all 101 senators and all 99 roll 
calls for analysis. We fit a one-dimensional model, with a polarity option 
that results in Democrats on the left and Republicans on the right. We 
used 100 parametric bootstrap samples to obtain reasonable estimates 
of confidence intervals and standard errors.

Table 1 reports point estimates and bootstrapped standard errors 
for the ten most liberal and ten most conservative senators (namely, 
the ten lowest and ten highest îξ ). Fifteen senators appear at the
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±1 boundary of NOMINATE’s parameter space, including Obama, 
who is placed at the lower limit of –1 along with Senators Biden, 
Lautenberg, Boxer, Sanders, Menendez, Whitehouse, and Feingold. It 
would seem that the only way to distinguish among these eight senators 
with estimated ideal points of –1—say, if we wanted to induce a rank 
ordering over senators—is to look at the standard errors. Presumably, 
if two (or more) legislators have the same estimated ideal points, then 
the legislator whose ideal point has the largest standard error should 
be ranked lower than the other. This order would make sense if the 
sampling distribution of the estimated ideal points was symmetric, 
with the sampling distribution being normal, at least asymptotically.

But what are we to make of the output of w-nominate in this 
case, with 15 point estimates at the edge of the parameter space, each 
with a reasonably large standard error? In one dimension, NOMINATE 
constrains the ideal points to lie in the interval [–1,1], so the sampling 
distribution of îξ  cannot possibly be normal, for then events that the 
model rules out by assumption would be assigned positive probability. 
For example, if îξ  = –1.0,, then any uncertainty must be to the right. 
Cases to the interior of the parameter space present difficulties, as well. 
What should we make of the fact that Senator Stabenow has an estimated 
ideal point of –.91 with a standard error of 1.01? It is difficult to know 
how to interpret these estimates and their standard errors.

Table 1
Ten Most Liberal and Ten Most Conservative Senators, 

W-NOMINATE Point Estimates of Ideal Points 
and Bootstrapped Standard Errors, 

for 99 National Journal Key Votes of 2007

Most Liberal	  	 	 Most Conservative	 	

Biden (D-DE)	 –1.00	 1.03	 Demint (R-SC)	 1.00	 1.00
Lautenberg (D-NJ)	 –1.00	 1.03	 Coburn (R-OK)	 1.00	 1.13
Boxer (D-CA)	 –1.00	 1.22	 Burr (R-NC)	 1.00	 1.01
Sanders (I-VT)	 –1.00	 1.11	 Allard (R-CO)	 1.00	 1.06
Menendez (D-NJ)	 –1.00	 1.03	K yl (R-AZ)	 1.00	 1.15
Obama (D-IL)	 –1.00	 1.04	 Inhofe (R-OK)	 1.00	 1.08
Whitehouse (D-RI)	 –1.00	 1.03	 Bunning (R-KY)	 1.00	 1.15
Feingold (D-WI)	 –1.00	 1.13	 Vitter (R-LA)	 0.99	 1.05
Leahy (D-VT)	 –0.92	 1.07	 Ensign (R-NV)	 0.98	 1.05
Stabenow (D-MI)	 –0.91	 1.01	 Enzi (R-WY)	 0.96	 0.98
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A fully Bayesian analysis clears up these issues. Taking the 
NOMINATE model as presented by Carroll et al. and restated in our 
equation (1), we use the prior ξi ~ Unif(–1, 1), but in addition we work 
with a (locally) identified likelihood by normalizing the ξi to range 
from –1 to 1 across legislators. As before, we denote the identified 
ideal points as ξĩ. We place uniform priors on the Yj and Nj parameters, 
constraining them to lie between min(ξi) and max(ξi ). We also transform 
Yj and Nj  to Ỹj and Nj̃, respectively, and the scaling parameter w to w̃. 
The β parameter is not affected by these identifying normalizations.17 
We also specify priors for the scaling parameters β and w—that is,
β ~ Unif (0, 1000) and w ~ Unif (0, 1)—and use the general-purpose 
Bayesian analysis computer program JAGS (Plummer 2009) to sample 
from the posterior density of the model parameters. For this small data-
set, a general-purpose program suffices, as we trade off programming 
time for run time. We initialize the algorithm with estimates of β and 
w and ideal points from w-nominate,  and we generate start values 
for the Yj and Nj parameters by running logistic regressions of each roll 
call on the w-nominate ideal-point estimates and transforming the 
estimated slope and intercept parameters.18 The resulting exploration 
of the posterior density of the model parameters is quite efficient with 
respect to the key parameters, the (identified) ideal points ξĩ, and bill 
parameters Ỹj and Nj̃. The usual convergence diagnostics suggest the 
MCMC algorithm deployed by JAGS may be stopped after about 
10,000 iterations.

The resulting posterior densities for the ideal points of selected 
legislators are represented in Figure 4. For legislators with considerably 
high levels of missing data (say, Obama and Biden), the posterior 
densities are pushed up against the edge of the parameter space, as are 
the densities for legislators with relatively one-sided voting histories, 
such as Sanders or Demint (R-SC). These posterior densities may look 
odd, but this presentation is merely a consequence of the particular 
identifying restriction in NOMINATE; ideal or any other model 
would produce similar-looking posterior densities for the ideal points 
of extremist legislators if it employed the normalization of –1 to 1 used 
by NOMINATE. 

The analyst must decide how to summarize the posterior densities 
generated by this Bayesian implementation of NOMINATE. Many of 
these marginal posterior densities are not normal, and so the mean and 
standard deviation are not sufficient summary statistics. What kind of 
point estimate makes sense? Should the analyst report the posterior 
mean or the maximum a posteriori value, or simply provide the marginal 
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histograms, as we have done here? Providing a point estimate and a 
95% highest probability density interval might be the best option, with 
the asymmetry in the HPD interval a signal to the alert reader that the 
corresponding posterior density is skewed, perhaps considerably so.

We also note that the MCMC algorithm performs extremely 
inefficiently with respect to the scaling parameters β and w̃ in 
NOMINATE. Even after 150,000 iterations of the sampler, we obtained 
the output depicted in Figure 5. The MCMC algorithm generates a very 
slow exploration of the joint posterior density for these parameters, with 
the joint posterior density of these two parameters having a distinct 
“banana” shape; a large slice of the parameter space has high posterior 
probability. There is not much information about these parameters in 
these data and one of the two scaling parameters could be redundant. 

If we only looked at the output of the NOMINATE algorithm 
and the point estimates for w and β, then we would not notice that

ββ
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these parameters are barely identified. Our Bayesian analysis leads us 
to explore the posterior density for these and other parameters in the 
model. With the flat priors we adopt here for all parameters, our use 
of MCMC methods generates a (random) exploration of the likeli-
hood, revealing the dependency between these two parameters in the 
NOMINATE model. 

7. Extending Ideal: Alternative Models

A relative advantage of the item-response model underlying the 
ideal estimator over the class of NOMINATE estimators is that the 
IRT model can be more easily altered to account for alternative data—
often in ways that are not easily possible using NOMINATE. This 
flexibility underlies many applications of the model in the literature, 
spanning many subfields of political science. Our examples illustrate 
that when comparing ideal and NOMINATE, another relevant point 
to consider is the relative flexibility of the model underlying ideal 
and the relative ease of estimating alternative models. Although we 
recognize that scholars are, thankfully, never restricted to a single 
estimator, we suggest that familiarity with the class of IRT models will 
likely yield greater payoffs than familiarity with NOMINATE, because 
of the flexibility of the class of models.

For example, Quinn (2004) has discussed the extension to 
nonbinary, including continuous, data, and variants of the model have 
been used to measure such diverse topics as the level of democracy in a 
country (Jackman and Treier 2008), the ideology of U.S. congressional 
districts (Levendusky, Pope, and Jackman 2008), voting behavior when 
abstention is an informative choice (Voeten 2000), the ideology of 
political moderates in the U.S. electorate (Hillygus and Treier 2009), 
and the ideology of federal agencies in the United States (Clinton and 
Lewis 2008).

Another extension involves the estimation of “large n, small 
m” data containing missing observations (that is, nonrectangular data 
sets). Recently, to assess congruence of preferences, several surveys 
queried citizens or federal executives about a select set of issues that 
have come before Congress. The resulting datasets have often contained 
a large number of respondents (who are treated as “legislators”) and 
relatively few questions (which function as “roll calls”). In addition, 
many respondents have been unable or unwilling to answer all of the 
questions they were asked. Estimating data with these properties in 
NOMINATE can be problematic. As a result, scholars have used the 
item-response model underlying IDEAL to examine spatial voting in the
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2004 U.S. presidential election (Jessee 2009), the congruence of citizen 
and legislator preferences (Bafumi and Herron 2009), and the relation-
ship of federal agencies to Congress (Bertelli et al. 2009).

A related elaboration appears in Clinton’s work with Lapinski 
(2006), which featured a multirater measurement model to assess 
legislative significance in a vein similar to Mayhew’s research (1991). 
Because the dataset contained significant amounts of missing data (not 
every chronicler of congressional activity summarized every period of 
congressional activity), it was impossible for Clinton and Lapinksi to 
generate estimates using NOMINATE without substantially altering the 
NOMINATE code. Moreover, one could incorporate additional statute-
level information that was both available and likely correlated with the 
significance of the enacted statutes if one used a hierarchical IRT, but 
such extension would present considerable difficulties for NOMINATE.

Finally, it is possible to impose informative priors on the item 
parameters to structurally estimate a game form. Clinton and Meirowitz 
(2004) have done so with their analysis of the Compromise of 1790. 
Treier and Pope (2009) did so to assess the enactment of the Great 
Compromise in the Constitutional Convention of 1787, as did Jeong 
(2008) for the contemporary U.S. Congress. Structurally estimating 
game forms and imposing the required constraints is relatively straight-
forward if one uses the item-response model, but it is much more 
difficult to use NOMINATE without customizing the program for the 
precise application of interest.

While we do not claim that NOMINATE cannot accommodate 
these data structures and incorporate additional information, we would 
argue that making the required adjustments to the underlying statistical 
measurement model is much easier in the item-response framework—
as is evidenced by the growing quantity of scholarship making use of 
Bayesian IRT models to analyze such problems. In the absence of com-
pelling evidence regarding the relative desirability of the two models 
on statistical grounds, we consider the flexibility of the item-response 
framework to be an advantage of ideal over NOMINATE.

8. Conclusion

As Carroll et. al and we have made clear, there are many 
similarities between NOMINATE and ideal. There is one difference, 
however, that we believe is rather consequential and worth highlighting: 
the Bayesian approach implemented in ideal is more flexible than 
NOMINATE and can be adjusted to take advantage of additional data 
and theory. The NOMINATE family of algorithms was designed to
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solve a particular problem using hardware from “a time of less-powerful 
computing.” Large (if not massive) roll-call matrices were supplied 
as input, and point estimates of legislative ideal points were output, 
determined by slightly idiosyncratic operationalization of the Euclidean 
spatial voting model in NOMINATE (that is, scaled Gaussian utility 
functions). In contrast, when developing the Bayesian approach, we 
began with the observation that if we assume quadratic utilities (an 
assumption widely used in other social-science applications), then the 
Euclidean voting model can be represented as a two-parameter item-
response model. Our choice to use this model was quite deliberate; it 
opens up the possibility of exploiting some of the many developments 
in the Bayesian analysis of IRT models in psychometrics and statistics 
(see, for example, van der Linden and Hambleton 1997).

Viewed from this perspective, the NOMINATE algorithms are 
something of a “closed shop,” with extensions or modifications of the 
scaled-Gaussian/logistic-voting model all but impossible for anyone 
other than the small set of individuals familiar with the NOMINATE 
source code. On the other hand, NOMINATE and ideal provide near-
identical answers for the class of problems for which it is possible to run 
both NOMINATE and ideal, and this correlation is heartening. We 
believe the fact that the Bayesian approach can accommodate a whole 
class of problems for which a NOMINATE equivalent does not (yet?) 
exist is an important advantage to consider when choosing which class 
of measurement models to use.
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NOTES

1. Indeed, we thank Doug Rivers, Jeff Lewis, and Keith Poole—as well as 
Andrew Martin and Kevin Quinn—for what they have all taught us about the analysis 
of roll-call data.

2. Rosas and Shomer (2008) critique the assumption that abstentions are missing 
at random. Carrubba, Gabel, and Hug (2008) address the possibility of a strategic agenda.

3. As an aside, the inability to form out-of-sample predictions is an under-
appreciated feature of roll-call analysis: that is, statistical operationalizations of spatial 
voting models do not yield out-of-sample predictions. Making predictions for voting on 
a new roll call requires knowing the location of the yea and nay positions for that roll 
call; making predictions for a new legislator requires knowing the legislator’s ideal point.

4. Experiments may be a better way to proceed here, since some of these 
parameters can be fixed, or considered fixed. Exploring how decision makers evaluate 
competing options may provide us with some evidence of the shape of the underlying 
utility function (see, for example, Grosser and Morton 2009).

5. We are grateful to Carroll et al. for highlighting this facet of NOMINATE in 
such a detailed fashion. Their discussion has stimulated our thinking about how we 
might introduce some resistance to outliers into the Bayesian model. One possibility 
would be to replace the normal density with a tv density, where v is an unknown 
degrees-of-freedom parameter. The tv  density is a scale-mixture of normals, with the 
scale (variance) parameters of the normals following an inverse-gamma density; the 
normal model is a limiting case, as v → ∞. If we suspect scale heterogeneity in the 
stochastic component of the legislator utility functions—say, either across legislators or 
across roll calls, and these are surely plausible hypotheses—but we lack firm beliefs as 
to the nature or source of that heterogeneity, then the t model is a simple, yet parametric 
way for us to tackle this possibility. We have not yet implemented this model, nor are 
we sure that it will yield results that differ markedly from some extant extensions of 
the IRT model (e.g., Bafumi et al. 2005) or that the data will convey much information 
about the degrees-of-freedom parameter, v (cf. Albert and Chib 1993).

6. See Poole and Rosenthal (1997, 237), Poole (2005, 110), or the clear exposition 
in Carroll et al. (2009).

7. For example, one may wish to incorporate a prior belief that the ideal points 
of legislators a and b are likely to be similar because the legislators represent districts 
with similar demographic or political characteristics, or that past roll-call voting conveys 
information about the ideal point underlying contemporaneous roll-call voting.

  8. One might incorporate, for example, a prior belief that the parameters of 
roll calls j and k are similar because the roll calls deal with similar subject matter, have 
similar sets of sponsors, or something along these lines.

  9. Indeed, the Markov chain Monte Carlo algorithms underlying ideal are 
only feasible on desktop computers with hardware available from the early 2000s or 
more recently. Poole and Rosenthal were analyzing large roll matrices for some time 
prior to this! 

10. The key factor is that the prior variance for the numerator, αj̃, equals the prior 
variance for the denominator, βj̃ . We could set both variances to small values consistent 
with precise beliefs about αj̃ and βj̃ and still obtain the Cauchy-like prior over τj.
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11. One approach is to express prior variances for α̃j and β̃j such that the 
resulting implied prior for τj looks reasonable. For instance, if α̃j ~ N(0, 1) and
β̃j  ~ N(0, 102), then the prior 95% credible interval for the bill midpoints τj = αj̃ /βj̃ is 
about [–1.3, 1.3], which, if anything, is too restrictive, since ideal points are normalized 
to have a mean of 0 and a standard deviation of 1 across legislators. When we consider 
that πij = ׀ (ξi = 0) = Ф(α̃j) is the probability that a legislator located at the mean of the 
distribution of ideal points votes for proposal j, we see that the prior αj̃ ~ N(0, 1) induces 
a uniform density on πij = ׀ (ξi = 0), which would not seem unreasonable but appears to 
generate a too restrictive prior on τj.  Holding the prior variance of α̃j  constant at 1.0, 
we can generate a more permissive prior on  by decreasing the prior variance of βj̃. For 
example, with α̃j ~ N(0, 1) and β̃j ~ N(0, 62), a prior 95% bound for the bill midpoints, 
τj, would be about [2.1, 2.1], which would span most legislators. Assuming a N(0,1) 
density across legislators (which holds, at least a priori), we would conclude that a 95% 
bound on τj ranges from the 1.8 to the 98.2 percentiles of the distribution of ideal points.

12. We might denote such a hierarchical model generically as τ ~ pτ(θτ), where
pτ is a density indexed by parameter(s) θτ. A simple, specific example might be
τj ~ N(µτ,ωτ

2 ) where µτ and ωτ
2  are hyperparameters with their own prior densities.

13. Strong statements to this effect appear in Gelman et al. 2004, Gelman and 
Hill 2007, and Jackman 2009.

14. That is, the roll calls are exchangeable and therefore we can treat them as 
if they were generated by a common stochastic process indexed by hyperparameters, 
and so forth.

15. For each set of priors, we ran the data-augmented Gibbs sampler in ideal 
for 1.1 million iterations, discarding the first 100,000 iterations and saving every one-
hundredth iteration of the remaining one million iterations. The sampler was initialized 
with all Democratic senators at –1 and all Republicans at 1. We generated start values 
for the bill parameters by running a probit of each roll call on these initial values for 
the ideal points.

16. If we transform from unidentified ideal points, ξi, to identified parameters, 
ξ̃i  = (ξi = c)/m, then we have γ1̃– γ1/m (and similarly for γ2), γ0̃ = (γ0 – c)/m, and ω̃ = ω/m.

17. The unidentified version of the NOMINATE model includes likelihood 
contributions of the sort w(ξi – Yj)2 and w(ξi – Nj)2. We transformed ξi to the identified 
parameters ξ̃i = (ξi + c)m, where c and m are solutions to the equations min(ξi ) + c = –1/m  
and max(ξi ) + c = 1/m.  The transformation from ξi to ξ̃i implies the transformations 
from Yj to Ỹj

 = (Yj + c)m (with a similar transformation for Nj) and w̃ = w/m2. That is, 
w(ξi – Yj)2 =  w̃ (ξ̃i – Ỹj)2, with a similar transformation for the likelihood contribution 
involving Nj. 

18. The logistic regression of yj on 

� 

ˆ ξ  yields an intercept  and a slope ,
j = 1, . . ., m. We then generate start values 

� 

Yj
(0) = − ˆ α j0 / ˆ α j1 + ˆ α j1 / 4  and 
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